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Abstract
One of the most elementary application of a lattice is the quantization of real valued s-dimensional vectors into
finite bit precision to make them representable by a digital computer. Most often, the simple s-dimensional regular
grid is used for this task where each component of the vector is quantized individually. However, it is known that
other lattices perform better regarding the average quantization error. A rank-1 lattices is a special type of lattice,
where the lattice points can be described by a single s-dimensional generator vector. Further, the number of
points inside the unit cube [0,1)s is arbitrary and can be directly enumerated by a single one-dimensional integer
value. By choosing a suitable generator vector the minimum distance between the lattice points can be maximized
which, as we show, leads to a nearly optimal mean quantization error. We present methods for finding parameters
for s-dimensional maximized minimum distance rank-1 lattices and further show their practical use in computer
graphics applications.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Computer Graphics]: Digitization and Image
Capture—Quantization

1. Introduction

The use of quantization of data points is one of the most ba-
sic and often used tools for algorithms in computer graphics.
For example colors are quantized in 8-bit per color channel
for image display or normal vectors are packed into 24-bit
normal maps. This principle is easily generalized to arbitrary
dimensions s by quantizing each dimension separately. This
can then be used in practical applications for almost any data
that occurs in a graphics algorithm.

More formally, this kind of quantization is the construc-
tion of a s-dimensional regular grid where the number of
discrete points is 2bs (with b being the number of bits cho-
sen to represent a value per dimension). While for specific
use-cases there are always highly sophisticated methods for
data reduction or quantization that lead to superior results,
the regular grid is still widely used. It is easy to implement
and understand; quantization is straightforward and fast to
convert back to the original domain. It is thus an indispens-
able tool for the computer graphics practitioner.

Despite its wide use the regular grid has two major draw-
backs. First the number of discretization points is the product

of the number of points per dimension (i.e. for 8-bit RGB im-
ages it is 2563) and it is not possible to arbitrarily adjust the
number of points and thus the bit depth to, for example, 17.
Adjusting the bit-depth per dimension has the problem of
different quantization errors per dimension and thus is not
optimal, if, for example all dimensions are equally impor-
tant. The second drawback is that it is known that the regular
grid is not optimal regarding the quantization error for s > 1
(for s = 1 the regular grid is just equidistant points).

In this paper we propose and discuss the use of a replace-
ment for the regular grid quantization by the use of rank-1
lattices. These lattices solve both problems mentioned above
while still being as simple and fast to use in practical applica-
tions. Even though the mathematical theory of these lattices
can be quite complex, we show in this paper that they can
be easily used for quantization in any algorithm. We start
in Section 3 by giving a more formal introduction to general
lattice quantizers in s dimensions and define the quantization
error. In Section 4 we present the theory of rank-1 lattices
and show how they can be constructed to perform always
better than the regular grid.
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Section 5 gives a step-by-step practical guide on how to
use our proposed quantization scheme in combination with
a table containing commonly used bit-depths up to 6 dimen-
sions.

2. Background

The scope of our work is to present a general quantization
approach using rank-1 lattices that can be used as a replace-
ment for ad-hoc regular grid quantization. We thus target
no specific use case besides representing multi-dimensional
data with a fixed pre-allocated amount of depth. Here we
concentrate on presenting the related work regarding the the-
oretical foundation of the use of lattices. For any specific use
case there are many possible choices of compression algo-
rithms that perform better than any general quantization.

As a generalization of lattice quantization, vector quanti-
zation is extensively studied for many application domains.
See for example [GG91]. Compared to our approach it is a
lot more complex to implement and use however.

Lattices other than the s-dimensional Cartesian lattice
Zs have been studied for their use in computer graph-
ics applications. The hexagonal lattice has been used be-
cause of its optimal sampling efficiency in two dimensional
space [VVPL02,MS05,CVFH08]. In particular the problem
of re-sampling between regular and hexagonal images is ad-
dressed. The permutohedral lattice has been used for high
dimensional data filtering [ABD10].

The general theory of s-dimensional optimal lattices
is connected to sphere packings and their applications,
where [CS10] provides a comprehensive discussion. Be-
cause of its optimal sampling efficiency in three dimen-
sional space, the body centered cubic lattice (BCC) has
been used for sampling and visualization of volumetric
data [EVDVM08, Cse05, LLWQ13]. In addition, the 4D
BCC lattice is used for 4D data visualization in [NM02,
LQ11].

Directly related to our work are applications of two di-
mensional rank-1 lattices in computer graphics. They have
been studied extensively by Dammertz et al. for image syn-
thesis and texture processing in [DK08, DDKL09]. Algo-
rithms for finding parameters for two-dimensional rank-1
lattices in order to maximize the minimum distance between
the lattice points are presented in [DDK08, Dam09]. These
maximized minimum distance (MMD) rank-1 lattices closely
approximate the hexagonal lattice. Notably in [DDKL09]
the equivalence of hexagonal lattices and a special class of
rank-1 lattices is proven.

3. Lattice Quantizers

In this Section we first give a brief introduction to lattices
and quantizers in general. Then we discuss the properties of
lattice quantizers. For a more detailed and rigorous treatment
of the subject we refer the reader to [CS10].

3.1. Lattices

A lattice is a discrete additive subgroup of Rs, i.e. a subset
Λ⊆ Rs which satisfies:

subgroup Λ is closed under addition and subtraction,
discrete there is an ε > 0 such that two distinct

points x 6= y ∈ Λ are at distance at least
‖ x− y ‖≥ ε.

The second rule is only important for theoretical consid-
erations as this rule is enforced by the finite precision of
a digital computer. The first rule, however, ensures that
the basic operations of addition and subtraction do not
lead to additional quantization (round-off) errors. A simple
example of a lattice is the s-dimensional cubic lattice Zs.

Lattice Basis: Each point of an s-dimensional lattice can
be represented as an integer linear combination of s linear
independent basis vectors b1, ...,bs:

x =
s

∑
i=1

ξibi , (1)

where ξ = (ξ1, ...,ξs) is an arbitrary integer vector. As such,
the matrix B = (b1, ...,bs)

T is also a generator of the lattice.
Note that each matrix where any integer linear combination
of the row vectors lead to the same points as in Equation (1)
is a generator of the same lattice.

3.2. Quantizers

A general quantizer can be defined as follows:

• N points P1, ...,PN ∈ Rs are chosen.
• Input: arbitrary point x ∈ Rs.
• Output: closest Pi to x.
• If closest Pi is not unique, chose one of them at random.

The procedure of quantization can also be described as:

• The points Pi partition the Rs into Voronoi cells V (Pi),
• if x ∈V (Pi), the output is Pi.

Quantization Error: In general the average mean squared
error per dimension for a given quantizer is

E =
1
s

∫
Rs
‖ x−Pi(x) ‖2 p(x) dx , (2)

where Pi(x) is the closest point Pi to x, ‖ · ‖ denotes the Eu-
clidean norm, and p(x) is the probability density of the input
x. As we are only concerned with lattice quantizers and we
assume a uniformly distributed input, this can be simplified.
The Voronoi cells V (Pi) of a lattice are all congruent to each
other and congruent to a polytope Π. If the origin of the co-
ordinate frame is placed at the centroid of Π, (2) becomes

E =
1
s
∫

Π
x ·x dx

Vol(Π)
, (3)
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dim Optimal Lattice G(Π) Regular Grid G(Π) Rank-1 g = (1,a,a2, ...) G(Π)

1 Z 0.083333 Z 0.083333 a = 1 0.083333
2 A2, hexagonal 0.080188 Z2 0.083333 a = 25962 0.080188
3 D∗3 , BCC 0.078543 Z3 0.083333 a = 23128 0.078752
4 D4 0.076603 Z4 0.083333 a = 20166 0.076973
5 D∗5 0.075625 Z5 0.083333 a = 2616 0.076320
6 E∗6 0.074244 Z6 0.083333 a = 20836 0.075806

Table 1: This table shows the quantization error G(Π) from Equation 4 for the best known s-dimensional lattice quantizers (for
an elaborate list and the construction of the higher-dimensional lattices D4, D∗5 and E∗6 we refer to [CS10]), for the Cartesian
lattice Zs, and for maximized minimum distance rank-1 lattices in Korobov form with 216 points found through computer search.
The value G(Π) for the rank-1 lattices is computed via excessive Monte Carlo integration (10 million samples). It can be seen
that the rank-1 lattices provide a near optimal quantization for each dimension.

where Vol(Π) is the volume of the Voronoi cell. This formu-
lation is not independent of the scale of the lattice (i.e. ex-
pansion or contraction of the lattice with the same constant
factor in each dimension would lead to a different error). In
order to compare lattices of different scales, the error needs
to be additionally normalized for the scale of the lattice:

G(Π) =
E

Vol(Π)
2
s
=

1
s
∫

Π
x ·x dx

Vol(Π)1+ 2
s
, (4)

the value G(Π) is the normalized second moment of Π. For
more details we refer to [CS10].

Lattice Quantizer: The set of N points are chosen to be the
lattice points in a specific region in Rs, for example the unit
cube [0,1)s. The lattice points are defined through a gener-
ator matrix and the output of the quantization procedure is
now an integer vector ξ.

With Equation (4), the quantization performance of dif-
ferent lattices can be compared. In Table 1 we present G(Π)
for dimensions 1 to 6 for the Cartesian lattice Zs, the optimal
lattice in the respective dimension, and optimized rank-1 lat-
tices found through computer search. The rank-1 lattices are
near the optimal quantization error and are presented in the
next section.

4. Rank-1 Lattices

First introduced by Korobov [Kor59], rank-1 lattices have
been widely studied since then, especially in the field
of numerical analysis and quasi-Monte Carlo integra-
tion [HHW81, Nie92]. For their use in computer graphics
applications see the references given in the related work, es-
pecially [Dam09].

4.1. Definition

The points xi of an s-dimensional rank-1 lattice in the unit
cube Is = [0,1)s are given by

Ln,g :=
{

xi :=
{

i
n

g
}

1

∣∣∣∣i = 0, ...,n−1
}

, (5)

where g∈Ns is a suitable integer generator vector for a fixed
number n ∈ N of points. {x}1 is the fractional part of x, i.e.
the lattice is restricted to the unit cube resulting in a one-
periodic pattern.

A suitable generator vector g = (g1, ...,gs) meets the con-
dition:

gcd(g1, ...,gs,n) = 1 , (6)

where gcd(·) is the greatest common divisor of all the gen-
erator vector components and the number of points (i.e. the
divisor is common for all values, as such the values are not
required to be relative prime). If this condition is not met,
points would coincide and the first condition of a lattice
would be violated (see Section 3.1). When the generator vec-
tor has the special form g = (1,a,a2, ...) for a ∈ [2,n− 1],
the lattice is a Korobov rank-1 lattice. This is the only form
we use in this paper as it simplifies the search for a good
lattice by restricting the search space and allows easy com-
putation of the index i of a lattice point xi in s dimensions
(see Section 4.4). Other than that, the rank-1 lattice search in
Section 4.3 is independent of that choice.

Note that rank-1 lattices have two main advantages over
other lattices. First, they exist for any number of points in
the respective domain, i.e. the unit cube. Second, encoding
a lattice point is simply done through its index i. This gives
us the important advantage to quantize to any number of bits
desired. Examples for two-dimensional rank-1 lattices can
be seen in Figure 1.

4.2. Choosing good Rank-1 Lattices

Not every choice of generator vector leads to a rank-1 lattice
that is suitable for quantization, as can be seen in the first
image of Figure 1. We therefore propose maximized mini-
mum distance (MMD) rank-1 lattices for quantization. This
follows the same argumentation as for the two dimensional
case in [DDKL09]. For higher dimensions maximization of
the minimal distance leads to minimizing the maximal di-
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Figure 1: The first three drawings show the rank-1 lattice L16,(1,5) and how it is constituted by the generator vector. The last
three show the maximized minimum distance rank-1 lattices L32,(1,7), L56,(4,7), and L64,(1,14). The rightmost lattice, however, is
MMD-optimized for the region [0,2)× [0,1) instead of [0,1)2, see Section 4.5.

ameter of the Voronoi cells of the lattice and as such directly
reduces the quantization error in Equation 4.

To illustrate this, and verify that there are actually rank-
1 lattices in higher dimensions with small quantization er-
ror, we plotted quantization error graphs in Figure 2 for ran-
dom generator vectors. The minimum distance is plotted ver-
sus the quantization error G(Π) of the corresponding lattice.
It can be seen that a large minimum distance results in a
smaller error, even in higher dimensions.

Since there is no known method to directly construct gen-
erator vectors of MMD rank-1 lattices, the generator vectors
need to be determined by a computer search. Methods for
two dimensions can be found in [DDK08]. In the following
we show how these methods can be generalized to higher
dimensions.

4.3. MMD Rank-1 Lattice Search

The basic procedure for finding rank-1 lattices with (nearly
optimal) maximized minimum distance consists of the fol-
lowing steps:

1. Choose candidate generator vector.
2. Construct a lattice basis out of this generator vector.
3. Apply a basis reduction algorithm.
→ This leads to the shortest vector in the lattice.

4. Termination: goto step 1 until "good" lattice found.

Basically, these steps are the same as for the two dimen-
sional case. Only the steps two and three need to be modi-
fied. A python implementation of the computer search can
be found in the supplemental material.

Choose Candidate Generator Vector: To restrict the
search space, we use generator vectors in Korobov form
g= (1,a,a2, ...) for a∈ [2,n−1]. The a value is enumerated,
or chosen at random. The length of the generator vector is a
trivial upper bound for the actual minimum distance of the
lattice, as such, short candidates can be skipped before ac-
tual basis reduction. Note, that the following algorithms also
work for general generator vectors as defined in Section 4.1.

Construct Initial Lattice Basis: Constructing a lattice ba-
sis out of a given generator vector for two dimensions is

shown by [Rot97]. Apparently an s-dimensional rank-1 lat-
tice Ln,g can be constructed by s + 1 vectors u1, ...,us+1,
where u1 := g and ui+1 = n ·ei (i = 1, ...,s and ei denotes the
i-th unit vector in s-dimensions). The idea now is to construct
an unimodular matrix Ds+1 (square integer matrix with de-
terminant +1 or −1), such that

(u1, ...,us+1)Ds+1 = (0,b1, ...,bs) , (7)

where b1, ...,bs is the demanded initial basis.

Let α = (α1, ...,αs+1) be the first column of that matrix.
Then

α1u1 + ...+αs+1us+1 = 0 , (8)

is demanded by Equation (7) and as such α can be
set to α1 = n,α2 = −g1, ...,αs+1 = −gs. Note that
gcd(α1, ...,αs+1) = gcd(g,n) = 1 (see Equation (6)). Given
only the single integer column vector α of the matrix Ds+1,
the matrix can be completed to the full unimodular ma-
trix [New72]. D2 is given by:

D2 =

(
α1 σ

α2 ρ

)
, (9)

where the integer elements ρ and σ can be determined via
the extended Euclidean algorithm [Knu73]:

ρα1−σα2 = δ2 . (10)

Note that δ2 = gcd(α1,α2) and is equal to the determinant
of the matrix D2. By the following scheme, Ds can be com-
pleted recursively to the full unimodular matrix Ds+1:

Ds+1 =



α1σ

δs

Ds
α2σ

δs
...

αsσ
δs

αs+1 0 · · · 0 ρ

 , (11)

where ρ and σ are now determined such that ρδs−σαs+1 =
δs+1, with δs+1 = gcd(α1, ...,αs+1). Note that the last col-
umn results in an integer vector despite the division opera-
tion, as δs is an integer factor of α1, ...,αs.

Basis Reduction: For the basis reduction step during the
rank-1 lattice search we use the algorithm given in [NS04]

c© 2015 The Author(s)
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Figure 2: Correlation between minimum distance and quantization error plotted for dimensions 2 to 6. Each dot in the plots
represents the minimum distance and quantization error of an s-dimensional rank-1 lattice with 1024 points, where the genera-
tor vector is chosen at random. In all plots the y-axis (quantization error) covers the range [0.07,0.14]. Note that both axes are
at logarithmic scale. The red line shows the quantization error for the Cartesian lattice Zs (always 0.08333) and the green line
the quantization error for the best known lattice quantizer for the corresponding dimension (compare this also to Table 1). The
quantization error of the rank-1 lattice was computed via Monte-Carlo integration. It can be seen that maximizing the minimum
distance of a rank-1 lattice leads to a small quantization error.

as this algorithm works fully in integer arithmetic (i.e. no
round-off errors) and finding the reduced basis for dimen-
sions up to six is guaranteed. The algorithm computes the
Minkowski-reduced basis, which has the important property
that in the reduced basis b1 corresponds to the shortest vector
in the lattice and determines the minimum distance between
the lattice points.

Algorithm 1 Greedy basis reduction
Require: Ordered basis [b1, ...,bs]≤, ‖ b1 ‖≤ ...≤‖ bs ‖
Ensure: Minkowski-reduced basis [b1, ...,bs]≤

k← 2
while k ≤ s do

Compute a vector c ∈ L[b1, ...,bk−1] closest to bk
bk← bk− c
if ‖ bk ‖≥‖ bk−1 ‖ then

k← k+1
else

inset bk at his length rank k′ (vectors are sorted ≤)
end if
k← k′+1

end while

Computing the vector c is done by solving a linear equation
system,

bk = ξ[b1, ...,bk−1] , (12)

and clamping the resulting coefficients ξi of the vector ξ to
integer values. Then c is chosen according to:

c = (ξ+∆)[b1, ...,bk−1] , minimize ‖ c−bk ‖ , (13)

where ∆ is an s-dimensional vector, where each compo-
nent ∆i is either 0 or 1 and all possible 2s combinations
are enumerated for finding the minimum of (13). For di-
mension s ≥ 5, the closest vector computation needs to be
altered in order to find the reduced basis, instead compute
c ∈ L[b1, ...,bk−1,bk+1, ...,bs] closest to bk. For further de-
tails and proof of correctness, we refer to [NS04].

Termination: As quality of a candidate generator vector,
we use exclusively the minimum distance of the lattice. In

all our test, we found a lattice with large minimum distance
in less than 216 iterations. These lattices had always good
quantization properties, near the optimal.

For early termination, the following two strategies can be
used. The first strategy is to compute the ratio of the mini-
mum distance l to the minimum distance lmin of a (hypothet-
ical) Cartesian lattice with n points in the unit cube:

lmin =
s

√
1
n
. (14)

Alternatively, the ratio to an upper bound can be used.
As noted in [Dam09], the minimum distance in a densest
sphere packing lattice can be used as an upper bound for
the maximal minimum distance of rank-1 lattices. In contrast
to [Dam09], we use the center density of a lattice [CS10] to
derive this upper bound:

δ = ρ
n · (det B)−

1
2 , (15)

where ρ is the radius of one sphere. As (det B)
1
2 =Vol(Π) =

1
n for a rank-1 lattice with n points in the unit cube, and with
l = 2ρ, we get an upper bound for the minimum distance:

l = 2 · s

√
δ

n
≤ lmax = 2 · s

√
δmax

n
, (16)

where δmax is the center density of the densest lattice sphere
packing in the respective dimension:

s 2 3 4 5 6
δmax

1
2·
√

3
1

4·
√

2
1
8

1
8·
√

2
1

8·
√

3

As generic limits, for lattices with n ≥ 216, we suggest the
following limits:

s 2 3 4 5 6
l/lmin 1.07 1.08 1.09 1.12 1.09
l/lmax 0.99 0.96 0.92 0.91 0.84

c© 2015 The Author(s)
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Single Core 12 Cores
s Quant. Recon. Quant. Recon.
2 4.22 0.574 1.61 0.089
3 5.71 0.538 1.62 0.089
4 13.45 0.536 1.84 0.086
5 24.23 0.527 2.22 0.086
6 45.32 0.518 4.02 0.084

Table 2: Time measurements (in seconds) for quantization
and reconstruction of 1 GB of double precision data with a
straight forward C++ implementation of the presented algo-
rithms. Measurements where taken on a computer with two
Intel Xeon X5660 6 Core CPUs with 2.80 GHz. The cost of
the reconstruction step is clearly independent of the dimen-
sion (one multiplication and one modulo operation per com-
ponent (5)). The quantization step, however, shows an expo-
nential increase with higher dimensions, but still in a prac-
tical range. Other than that, it scales perfectly with multiple
cores as each s-dimensional vector can be quantized inde-
pendently. Quantization bit depth was set to 48 bits.

4.4. Quantization with a Rank-1 Lattice

Quantizing a vector v ∈ [0,1)s is done by first solving the
linear equation system

v = ξ[b1, ...,bs] , (17)

and clamping the resulting coefficients of ξ to integer values
(compare to (12)). This results in the Cartesian coordinates
of a lattice point p. The lattice point p is the anchor point of
a parallelepiped given by,

(ξ+∆)[b1, ...,bs] , where ∆ ∈ [0,1)s , (18)

containing no other lattice point but the point v (compare
to (13)). By enumerating all corner points of the paral-
lelepiped the nearest lattice point pnear is found. This is in
fact very similar to the previews method for finding the vec-
tor c during basis reduction.

What remains is to translate the Cartesian coordinates of
pnear into its index inear in the rank-1 lattice (5). If the first
component of the generator vector g1 is equal to 1 (which is
the case for g in Korobov form), then the index i of the lattice
point p is given by its first component i = p1 (this directly
follows from (1) and (5)). Hence, for a rank-1 lattice with 2b

points, we need b-bits to store i, which directly translates to
the quantized vector via the given generator vector g.

Note that computing the closest lattice point (also re-
ferred to as Closest Vector Problem, CVP) is in general
NP-hard for high dimensions, even if the reduced basis is
known [AEVZ00, HS07]. However, for dimensions up to 6
this is not severe as can be seen in Table 2 where we mea-
sured the performance of this procedure. Also see the dis-
cussion in Section 6.3.

4.5. Quantization on the Hyperrectangle

As data is often not equally wide distributed in all dimen-
sions, it is desirable to have the quantization method not be
restricted to a hypercube. Quantizing data on a hyperrectan-
gular region [0,x1)× [0,x2)× ...× [0,xs) with a given rank-1
lattice is strait forward. The points of the rank-1 lattice inside
the hypercube [0,1)s need to be scaled to match the hyper-
rectangle, this is done by simply scaling the lattices basis be-
fore solving for Equation (17). To compute the index of the
lattice point, the point needs to be scaled back to the [0,1)s

domain. The other steps of quantization remain the same as
in Section 4.4.

What remains is to optimize the rank-1 lattice for
maximized minimum distance on the scaled domain (see
Figure 1, rightmost lattice). This is achieved by scaling
the initial basis (7) before basis reduction, as shown by
Dammertz [Dam09]. This results in a rank-1 lattice which
is optimized for the scaled domain. See Figure 5 where this
method is applied to the Stanford Buddha.

5. Practical Application of Rank-1 Quantizers

In this section we present a step by step guide on how to use
our proposed quantization scheme in practical applications.
We assume that the input data is in the unit cube [0,1)s, or
on a hyperrectangle. A python implementation of the quan-
tization steps can be found in the supplemental material.

For ease of reference here is a summary of the used symbols

s dimension of the data
b quantization bit-depth (i.e. 32bits)
n n = 2b, number of rank-1 lattice points
g the generator vector
i index of a data-point (represented by b bits)
di the corresponding datapoint to index i

For the preparation and quantization of the input data three
steps need to be performed:

A) Bit-Depth and Dimension First the dimensionality of
the input data needs to be known and the target bit-depth
needs to be defined.

B) Choose Generator Vector Next, the corresponding op-
timal generator vector for the rank-1 lattice needs to be
selected. This can be done by either looking it up in a
table (a shortened version of this data can be found in Ta-
ble 3) or by using the provided python implementation of
the search from Section 4.3.

C) Quantization Finally all data points need to be quan-
tized by projection onto the corresponding basis and the
resulting integer point index i is the quantized representa-
tion of this data-point, see Section 4.4 and 4.5.

To use the quantized data only a simple computation needs
to be performed:

D) Reconstruct Reconstructing the quantized data from the
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index is now done by a simple multiplication with the gen-
erator vector and a modulo operation:

di =
1
n
(i g mod n) .

This can be efficiently implemented on any current hard-
ware architecture when n is chosen as a power of two with
a bit-wise and operation instead of the modulo. Note that
the result needs to be additionally scaled when the quan-
tization was performed on a domain other than the unit
cube [0,1)s.

s\b 16 32 48 64
2 25962 306994 221529218 4615321823
3 23128 264892 2697033 365423322
4 20166 234139 373961 16832394
5 2616 191538 143618 1494331
6 20836 57697 12284 227042

Table 3: List of the (a) parameter of the Korobov generator
vectors g = (1,a,a2, ...) for near optimal rank-1 lattices for
selected bit-depths b and dimensions s.

6. Example Applications and Discussion

Here we show two example applications of ad-hoc quantiza-
tion of multi-dimensional input data and compare the results
to the regular grid quantization. The first application is the
quantization of 3d vertex position in a triangle mesh. In the
second application we quantize 6d spectral reflectance tex-
tures.

6.1. Mesh Vertex Quantization

A very simple and straightforward application is the quanti-
zation of 3d positions. Figure 3 shows a closeup of different
quantization options used on a mesh and Table 4 shows the
quantization error for different input meshes. The quantiza-
tion error for all three meshes is almost identical even though
the meshes themselves are quite different because they have
no specific structure and enough vertices to behave almost as
random data input regarding the lattices. Quantization using
the axis aligned bounding box as domain instead of the unit
cube is shown in Figure 5.

6.2. Spectral Reflectance Quantization

Multi-spectral reflectance textures are a good example for
the use of rank-1 lattices for quantization because they are
naturally high dimensional and require a lot of storage space
for high resolutions. Figure 4 shows an example of quantiz-
ing a 6d spectral texture and the corresponding errors. The
spectral reflectance textures we use here were captured in
a project [RSK10] at the University of Bonn. It can be seen
that the rank-1 lattice performs as well as the theoretical con-
siderations in Section 4 predicted. For more comparison im-
ages and bit-depths see the supplemental material.

Original 10+12+10-bit grid, AABB
RMSE: – RMSE: 1.029 ·10−4

32-bit rank-1 lattice [0,1)3 32-bits rank-1 lattice, AABB
RMSE: 1.726 ·10−4 RMSE: 0.956 ·10−4

Figure 5: Stanford Buddha quantized to 32-bits per vertex.
The configuration of 10+ 12+ 10-bits is optimal for regu-
lar grid quantization of this model. However, rank-1 lattice
quantization shows better results than the regular grid when
optimized for the axis aligned bounding box. Finding the pa-
rameters for this lattice took about 2 minutes with the python
implementation of the search algorithm.

6.3. Discussion

The quantization error reported in the examples above is a
direct result of the theoretical derivation and construction
from Section 4. This shows that similar results can be ex-
pected independent of the application domain as long as the
input data is unstructured (i.e. not already on a regular grid).

One important possible drawback of using rank-1 lattices
for quantization is inherent in the irregular structure. When
the input data contains the same value across all dimensions
a rank-1 lattice will produce slightly different values for
each dimension while the regular grid (with equal number
of bits per dimension) will produce the same value for all di-
mensions. For example the vector (0.3,0.3,0.3) is quantized
to (0.25,0.25,0.25) using a regular grid with 3× 2-bit and
(0.26,0.28,0.25) with a 6-bit rank-1 lattice.

Another aspect of rank-1 lattices in the form we presented
above are the lack of any simple hierarchical structure on
them. It is thus not easily possible to embed finer lattices
into parts of the domain as can be done with regular grids
and was done for example by Segovia et al. [SE10] and
Garanzha et al. [GBG11] for ray tracing meshes. The use of
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a) b)

c) d)

Figure 3: This figure shows a direct comparison of different quantization bit depths for rank-1 lattices. a) shows the original
Stanford Buddha b) quantized to 30-bit c) 33-bit d) 36-bit. The bit-depths here were chosen to be directly comparable to a
regular grid quantization. For more and different bit-depths see Table 4.

Buddha Museum Conference

# Triangles 1087542 1468284 1064498
regular grid (30-bit) 2.82 ·10−4 2.84 ·10−4 2.77 ·10−4

regular grid (33-bit) 1.41 ·10−4 1.41 ·10−4 1.41 ·10−4

regular grid (36-bit) 7.04 ·10−5 7.00 ·10−5 7.04 ·10−5

r1-Lattice (30-bit) 2.74 ·10−4 2.74 ·10−4 2.74 ·10−4

r1-Lattice (32-bit) 1.73 ·10−4 1.73 ·10−4 1.72 ·10−4

r1-Lattice (33-bit) 1.37 ·10−4 1.37 ·10−4 1.37 ·10−4

r1-Lattice (36-bit) 6.85 ·10−5 6.86 ·10−5 6.86 ·10−5

r1-Lattice (37-bit) 5.44 ·10−5 5.44 ·10−5 5.44 ·10−5

Table 4: This table shows the RMSE quantization error of different lattice configurations applied to three differen input meshes.
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reference 6×4-bit regular 24-bit rank-1 6×6-bit regular 36-bit rank-1

0.0210 0.0125 0.00422 0.00415

Figure 4: This figure shows the result of quantizing a 6d spectral reflectance texture to 24-bit and to 36-bit using a regular grid
and a rank-1 lattice. The second row shows the difference to the reference image and the last row the RMSE of the quantized
texture data. The input data has a resolution of 832× 669× 6 (12.7 MB) and the quantization results in 1.6 MB and 2.1 MB
respectively.

rank-1 lattice sequences [HHLL00] could solve this problem
but significantly increase the complexity of implementation
and search.

Our proposed method is limited by the exponential com-
plexity of basis reduction and quantization with respect to
the dimension (Section 4.4). However, for dimensions up to
six we have shown the practicability of this approach. Fur-
thermore, the reconstruction is always simple and indepen-
dent of the dimension, which is a main advantage over other
lattices. A general lattice is defined by a generator matrix
(i.e. the lattice basis) and not just a single generator vector,
which makes reconstruction more difficult and further needs
special care when encoding the coefficients.

7. Future Work

As can be seen in Table 1 and Figure 2, the gab to the opti-
mal quantization lattice gets larger with higher dimensions,
though, the advantage to the Zs lattice is still improving. This
gab needs to be further investigated, for example, does it sub-
stantially improve when not restricted to Korobov rank-1 lat-
tices?

Another topic is to improve the shortest vector search and
the basis reduction. They may be improved trough generic
algorithm, such as [LLM06], or through exploiting the spe-
cial arithmetic structure of rank-1 lattices.

Furthermore, other applications for these lattices can be
investigated, such as sampling and discretization of multidi-
mensional domains.

8. Conclusion

We have demonstrated the theoretical concept of using rank-
1 lattices as simple quantizers for practical applications. The
main advantages of rank-1 lattices are:

• Arbitrary bit-depth b, independent of dimension.
• Close to optimal lattice quantization error (always better

than regular grid).
• Very easy and fast to compute the data from the quantized

bit representation (s multiplications and bit masking).
• Same code and structure for any dimension s.

Our experiments have shown that the construction princi-
ple for rank-1 lattices we derived result in lattices that always
outperform the commonly used regular grid while being still
almost as easy to use. We also showed that these resulting
rank-1 lattices are close to the optimal lattice for their re-
spective dimension. The advantage of the ability to quantize
to arbitrary bit-depth allows for example to quantize 3d data
directly into 32-bits which fits current computer architec-
tures well. This flexibility is achieved without any special
cases by just choosing a different generator vector and the
target bit resolution can be fine-tuned for the current appli-
cation.
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